Equivalence of Gromov-Prohorov- and Gromov’s 2λ-metric on the space of metric measure spaces
نویسنده
چکیده
The space of metric measure spaces (complete separable metric spaces with a probability measure) is becoming more and more important as state space for stochastic processes. Of particular interest is the subspace of (continuum) metric measure trees. Greven, Pfaffelhuber and Winter introduced the Gromov-Prohorov metric dGP on the space of metric measure spaces and showed that it induces the Gromov-weak topology. They also conjectured that this topology coincides with the topology induced by Gromov’s 21 metric. Here, we show that this is indeed true, and the metrics are even bi-Lipschitz equivalent. More precisely, dGP = 122 2 , and hence dGP ≤ 21 ≤ 2dGP. The fact that different approaches lead to equivalent metrics underlines their importance and also that of the induced Gromov-weak topology. As an application, we give a shorter proof of the known fact that the map associating to a lower semi-continuous excursion the coded R-tree is Lipschitz continuous when the excursions are endowed with the (non-separable) uniform metric. We also introduce a new, weaker, metric topology on excursions, which has the advantage of being separable and making the space of bounded excursions a Lusin space. We obtain continuity also for this new topology.
منابع مشابه
On the topological equivalence of some generalized metric spaces
The aim of this paper is to establish the equivalence between the concepts of an $S$-metric space and a cone $S$-metric space using some topological approaches. We introduce a new notion of a $TVS$-cone $S$-metric space using some facts about topological vector spaces. We see that the known results on cone $S$-metric spaces (or $N$-cone metric spaces) can be directly obtained from...
متن کاملConvergence in Distribution of Random Metric Measure Spaces
We consider the space of complete and separable metric spaces which are equipped with a probability measure. A notion of convergence is given based on the philosophy that a sequence of metric measure spaces converges if and only if all finite subspaces sampled from these spaces converge. This topology is metrized following Gromov’s idea of embedding two metric spaces isometrically into a common...
متن کاملOn metric spaces induced by fuzzy metric spaces
For a class of fuzzy metric spaces (in the sense of George and Veeramani) with an H-type t-norm, we present a method to construct a metric on a fuzzy metric space. The induced metric space shares many important properties with the given fuzzy metric space. Specifically, they generate the same topology, and have the same completeness. Our results can give the constructive proofs to some probl...
متن کاملOn the Structure of Metric-like Spaces
The main purpose of this paper is to introduce several concepts of the metric-like spaces. For instance, we define concepts such as equal-like points, cluster points and completely separate points. Furthermore, this paper is an attempt to present compatibility definitions for the distance between a point and a subset of a metric-like space and also for the distance between two subsets of a metr...
متن کامل